Regularized Moving-Horizon PWA Regression for LPV System Identification

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularized Nonlinear Moving Horizon Observer

A moving horizon state observer is developed for nonlinear discrete-time systems. The new algorithm is proved to converge exponentially under a strong detectability assumption and the data being persistently exciting. However, in many practical estimation problems, such as combined state and parameter estimation, data may not be exciting for every period of time. The algorithm therefore has reg...

متن کامل

Control of Pwa Systems Using a Stable Receding Horizon Method

In this paper we derive stabilization conditions for the class of piecewise affine (PWA) systems using the linear matrix inequality (LMI) framework. We take into account the piecewise structure of the system and therefore the matrix inequalities that we solve are less conservative. Using the upper bound of the infinite-horizon quadratic cost as a terminal cost and constructing also a convex ter...

متن کامل

Finite-Horizon Input Selection for System Identification∗

The accuracy of an identified model depends on the choice of input signal. Persistency of excitation is a necessary criterion for such signals. In this paper we develop additional criteria for input signal selection, in particular, the input at each time step is chosen to minimize the predicted variance of the system estimate at the next time step. We extend the method to the finitehorizon inpu...

متن کامل

Asymptotically optimal orthonormal basis functions for LPV system identification

A global model structure is developed for parametrization and identification of a general class of Linear Parameter-Varying (LPV) systems. By using a fixed orthonormal basis function (OBF) structure, a linearly parametrized model structure follows for which the coefficients are dependent on a scheduling signal. An optimal set of OBFs for this model structure is selected on the basis of local li...

متن کامل

Regularized multivariate stochastic regression

In many high dimensional problems, the dependence structure among the variables can be quite complex. An appropriate use of the regularization techniques coupled with other classical statistical methods can often improve estimation and prediction accuracy and facilitate model interpretation, by seeking a parsimonious model representation that involves only the subset of revelent variables. We p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IFAC-PapersOnLine

سال: 2018

ISSN: 2405-8963

DOI: 10.1016/j.ifacol.2018.09.048